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The combination of satellite remote sensing and carbon cycle models provides an opportunity for regional to
global scale monitoring of terrestrial gross primary production, ecosystem respiration, and net ecosystem
production. FPAR (the fraction of photosynthetically active radiation absorbed by the plant canopy) is a
critical input to diagnostic models, however little is known about the relative effectiveness of FPAR products
from different satellite sensors nor about the sensitivity of flux estimates to different parameterization
approaches. In this study, we used multiyear observations of carbon flux at four eddy covariance flux tower
sites within the conifer biome to evaluate these factors. FPAR products from the MODIS and SeaWiFS sensors,
and the effects of single site vs. cross-site parameter optimization were tested with the CFLUX model. The
SeaWiFs FPAR product showed greater dynamic range across sites and resulted in slightly reduced flux
estimation errors relative to the MODIS product when using cross-site optimization. With site-specific
parameter optimization, the flux model was effective in capturing seasonal and interannual variation in the
carbon fluxes at these sites. The cross-site prediction errors were lower when using parameters from a cross-
site optimization compared to parameter sets from optimization at single sites. These results support the
practice of multisite optimization within a biome or ecoregion for parameterization of diagnostic carbon flux
models.
© 2009 Elsevier Inc. All rights reserved.
1. Introduction
The ability to monitor terrestrial carbon fluxes at regional to global
scales is of increasing interest in relation to understanding unman-
aged and managed influences of the biosphere on the global carbon
cycle (Canadell et al., 2007). Satellite remote sensing potentially offers
spatially continuous information on relevant land surface properties
including land cover, vegetation type, vegetation structure, distur-
bance history, phenology, drought stress, and light use efficiency
(Running et al., 1999; Turner et al., 2004). However, design of appro-
priate models that use this information for scaling carbon fluxes, and
parameterizing these models for spatial mode application, remain
significant research challenges.
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In diagnostic carbon cycles models (i.e. models driven by time series
data from satellites on vegetation greenness), canopy gross primary
production (GPP) is generally estimated as the product of the absorbed
photosynthetically active radiation (APAR) and light use efficiency
(LaFont et al., 2002; Mahadevan et al., 2008). Scalars for environmental
stress factors like low temperature and high vapor pressure deficit may
be used to modify a base rate for light use efficiency (LUE). Autotrophic
respiration is often calculated as a fixed proportion of GPP. Algorithms
for heterotrophic respiration are more variable, with some using simple
base rate formulations and others using multiple litter and soil carbon
pools with varying turnover times.

FPAR (the fraction of incoming PAR absorbed by the canopy) is a
critical input to diagnostic models and global FPAR products are now
derived from multiple sensors (MODIS, Myneni et al., 2002; SeaWiFS,
Gobron et al., 2006; MERIS, Gobron et al., 2008). The algorithms
generally use empirical relationships or radiation transfer models.
Ground validation of these FPAR products has been limited to
relatively few sites at most (e.g. Turner et al., 2005; Fensholt et al.,
2006) and accuracy varies widely.
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Fig. 1. Site locations. Background vegetation cover is from the MODIS sensor.

Table 1
Site characteristics.

Site Campbell
Rivera

Wind
Riverb

Metolius
Riverc

Niwot
Ridged

Location 49°52′N,
125°20'W

45°49'N
121°57'W

44°27'N
121°33'W

40°02'N
105°33'W

Precipitation (cm) 150 247 55 80

Mean annual
Temperature (°C) 8.5 8.7 7.5 1.5
Stand age (yrs) 56 ~450 89 ~100
Leaf area index (m2 m−2) 8.4 8.6 2.8 4.2
fPAR (0–1) 0.95e 0.95e 0.45f 0.93e

LUEclear-sky (gC MJ−1) 1.0 1.2 0.9 0.4

LUEclear-sky refers to light use efficiency at the flux tower under clear skies and favorable
meteorological conditions.

a Humphreys et al., 2006.
b Falk et al., 2008.
c Irvine et al., 2008.
d Sacks et al., 2007.
e Derived from LAI using Beer's Law (Jarvis and Leverenz, 1983).
f Makela et al., 2008.
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Diagnostic models tend to be kept simple enough that the para-
meters can be optimized from measurements. The need for parameter
optimization traces in part to the limitations in satellite data, notably
effects of cloudiness on FPAR. To some degree, parameter optimization
compensates for possible errors elsewhere in the combination of model
structure and model inputs (Medlyn et al., 2005).

In some applications, diagnostic models have been optimized
across all biome types using a single set of measurements of net
primary production (NPP) as reference values (e.g. Potter et al., 1993).
More commonly, diagnostic models are parameterized at the biome
level of vegetation stratification, the rationale being that in the case
of vegetation parameters like LUE, plants make evolutionary trade-
offs such that specialization for one climate regime will make it less
competitive in other climate regimes. For parameters related to hetero-
trophic respiration (Rh), the situation is similar in that controls on
decomposition rate, such as litter quality, may be characteristic of
specific ecosystem types (Adair et al., 2008).

Because GPP and ecosystem respiration (Re) can be estimated from
measurements of net ecosystem exchange (NEE) at eddy covariance
flux towers (Falge et al., 2002; Densai et al., 2008), establishment of a
network of tower sites (Baldocchi et al., 2001) has greatly enhanced
the possibilities for parameterizing and testing diagnostic models
(Sims et al., 2008; Mahadevan et al., 2008). However, there has been
little study of using multiple flux tower sites for parameterization
within a single biome or ecoregion. Makela et al. (2008) found that
responses of GPP to environmental stressors were similar across 5
conifer sites differing widely in climate but that base rates for LUE
were different at each site.

In this study, we evaluate alternative FPAR sources and parameter
optimization schemes for a carbon cycle diagnostic model applied at
four sites in western North America dominated by conifer forests.
Three years of tower data at each tower site provided the reference
observations.

2. Methods

2.1. Sites

Four coniferous forest sites inwestern North America were used in
the study (Fig. 1, Table 1). Each had a multiyear record of eddy
covariance flux measurements and observations of meteorological
variables. The sites varied widely in climate conditions, stand age, and
leaf area index. The Campbell River site (CR) is a young Douglas-fir
(Psuedotsuga menzeisii) stand that originated with a clear-cut harvest
in 1949. The stand is located on Vancouver Island in western Canada
and the climate is characterized by cool wet winters and mild dry
summers. The Wind River site (WR) is an old-growth stand in the
western Washington (USA) dominated by Douglas-fir and western
hemlock (Tsuga heterophylla). Winters are colder and summers
warmer than at CR. The Metolius River site (MR) is a mature
ponderosa pine (Pinus ponderosa) stand in central Oregon (USA)
that was harvested around 1920. Winters are cold and summers dry,
with relatively high summer vapor pressure deficits (VPDs). The
Niwot Ridge site in central Colorado (USA) was logged about 100 year
ago. It is a subalpine forest dominated by Engelmann spruce (Picea
engelmanii), subalpine fire (Abies lasiocarpa), and lodgepole pine
(Pinus contorta). A late summer dry period is common at CR, WR, and
MR but not at NR.

Methodology for measurement of meteorological variables and
NEE at the sites are given in the references in Table 1. An index of
cloudiness, for use in modifying the light use efficiency parameter
(see below), was calculated as the ratio of PAR to potential PAR under
clear sky conditions (Fu and Rich, 1999). Missing meteorological data
were filled from nearby meteorological station data and gaps in flux
observations were filled by reference to empirical functions driven by
meteorological data derived from periods of good quality observa-
tions. GPP estimates were derived from observations of net ecosystem
exchange (NEE) and estimates of ecosystem respiration (Re) during
daytime periods, with Re based on relationships of nighttime NEE to
air or soil temperature (Densai et al., 2008). At NR, the reference flux
values were the best fit estimates from the SIPNETmodel fit to the NEE
observations (Sacks et al., 2007). GPPs from SIPNET were of similar
magnitude to GPPs modeled using the temperature/nighttime NEE
approach (Sims et al., 2008).
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2.2. Model description

A diagnostic carbon flux model (CFLUX) developed previously for
application in coniferous forests was used in this study. The detailed
algorithmsand their rationales aregiven inTurneret al. (2006)andbriefly
described here. The model produces daily estimates of GPP, autotrophic
respiration (Ra), Rh, and NEE. Daily meteorological inputs are photo-
synthetically active radiation, 24 h minimum temperature (Tmin), 24 h
average temperature (Tavg), daytimemean vapor pressure deficit (VPD),
and 24 h total precipitation. Site variables are vegetation type, stand age,
and soil water holding capacity (here we used 200 mm in all cases).

The GPP estimate is based on a light use efficiency approach.

GPP = eg⁎APAR⁎FPAR ð1Þ

Where

GPP Gross primary production (gC m−2 d−1)
eg Final LUE (gC MJ−1)
↓PAR Incident photosynthetically active radiation (MJ m−2 d−1)
FPAR Fraction of ↓PAR absorbed by the canopy.

eg is calculated from a minimum value (based on observations at
the flux tower of clear sky LUE under favorable meteorological
conditions) that is adjusted upward as a function of cloudiness and
downward as a function of scalars for Tmin, VPD, the soil water status,
and the stand age (Turner et al., 2006).

Ra is the sum of maintenance respiration (Rm) and growth respi-
ration (Rg).

Rm = Rm�base⁎Q10
∧ Tair − 20ð Þ= 10ð Þ⁎ 1= − kð Þ log 1− FPARð Þð Þ ð2Þ

where

Rm_base Base rate of autotrophic respiration (gC m−2 d−1)
Q10 Change in rate for a 10 °C increase in temperature (here we

use 2.0)
Tair Daily (24 h) mean air temperature
k Radiation extinction coefficient (here we use 0.5)
FPAR Fraction of ↓PAR absorbed by the canopy.

The Rg component of Ra is calculated on a daily basis as:

Rg = GPP − Rmð Þ⁎Rg frac ð3Þ

Where
Rg_frac is the fraction of carbon available for growth that is used for

growth respiration (here we used 0.25).
The Rh algorithm also uses a base rate, and contains functions for

sensitivity to temperature, soil moisture, and stand age.

Rh = Rh�base⁎SST⁎SSW⁎SSA⁎FPAR ð4Þ

Where

Rh_base Base rate of heterotrophic respiration (gC m−2 d−1)
SST Scalar for soil temperature
SSWh Scalar for soil water content
SSAh Stand age factor
FPAR Fraction of ↓PAR absorbed by the canopy

NEE is then GPP minus Re (Re=Ra+Rh) with positive values
indicating carbon uptake by the ecosystem.
CFLUX calculates a simple water balance based on precipitation as
the input and evapotranspiration plus runoff as outputs. Evapotran-
spiration is calculated from GPP and water use efficiency.

ET = GPP⁎WUE ð5Þ

Where

ET evapotranspiration (mm d−1)
WUE water use efficiency (mm per gC of GPP)

A value of 0.2 mm gC−1 was used at all sites based on observations
at a range of flux tower sites (Law et al., 2002).

2.3. FPAR data

We obtained 3 years of the standard FPAR product (collection 4.5)
from the MODIS sensor for each site from the U.S.G.S. Data Archive
and Analysis Center (LPDAAC, 2008). The standard FPAR product
(MODISorig) has a spatial resolution of 1 km and is an 8-daymaximum
value (Myneni et al., 2002). The value is derived from a radiation
transfer algorithmwhen possible and an empirical spectral vegetation
index approach as a backup algorithm. Quality flags give an indication
of which algorithm was used and the relative quality of the estimate
(Cohen et al., 2006). We averaged FPAR values over a 3 cell by 3 cell
window centered on the flux tower coordinates.

To minimize errors associated with low quality data, a simple
linear interpolation algorithm was used to fill values for days with a
low data quality flag (Zhao et al., 2005) and we applied it to the
MODISorig data to form a MODISfill product. We also investigated the
effect of a third form of FPAR in which the MODISfill version is
smoothed with the TIMESAT algorithm (Jonsson and Eklundh, 2004).
This version (MODISTS) was produced by NASA for evaluation
purposes (Gao et al., 2008; Nightengale et al., 2009; NACP, 2008).

We also tested an independent FPAR data set for these sites derived
from the SeaWiFS sensor (Gobron et al., 2006). Spatial resolution of
SeaWiFS data is ~2.2 km and temporal resolution is 10 days. As with
the MODIS FPAR product, we used the Zhao et al. (2005) algorithm to
fill missing data (SWfill).

2.4. Parameter optimization approach

The scheme for optimizing CFLUX parameters at a single flux tower
sites and year is described in Turner et al. (2006). Briefly, there are
three steps. The reference data required are daily estimates for GPP
and NEE, and an estimate of NPP at the site. Herewe used tower-based
GPP and NEE. For NPP, we assumed it was a fixed proportion of GPP
based on measurements at the site (WR=0.3, CR=0.6, MR=0.6) or
0.47 following Waring et al. (1998). The possible range for the
parameter values is based on literature studies and preliminary model
runs. The optimization may also choose to not use the temperature or
VPD scalars if error is minimized by doing so. All combinations over
the complete possible range of each parameter are examined.

In the first step, the five parameters controlling GPP (maximum
LUE and the upper and lower bounds for the VPD and Tmin effects) are
optimized using tower GPP for reference values. Minimum Root Mean
Square Error (RMSE) is used as the criteria for selecting the optimum
parameter set. In the second step, the optimized GPP parameters are
carried over and the base rate for maintenance respiration (Rm_base) is
optimized using the annual NPP as a reference and the minimum NPP
bias as the selection criteria. Lastly, the optimized parameters for GPP
and Rm are carried over and the base rate for Rh, along with
parameters that determines sensitivity to temperature and the
minimum FPAR (permits Rh when FPAR is artifactually low, Turner
et al., 2006) are optimized using the daily-integrated NEEs as the
reference values, and the minimum RMSE as the selection criteria.



Fig. 2. Four versions of FPAR time series data. MODISorig is the standard product as it comes from NASA. MODISfill is the same data with missing dates filled in using the Zhao et al.
(2005) algorithm. MODISTS is the MODISfill data smoothed with the TIMESAT algorithm (Jonsson and Eklundh, 2004). SWfill is the FPAR product from the SeaWIFS sensor (Gobron
et al., 2006) filled using the Zhao et al. (2005) algorithm. Years are 2002–2004 except CR (2001–2003).
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To extend the optimization procedure to cover a three year interval
for a site, a single RMSE was computed for the 3 years of data
(n=1095) in the GPP and NEE comparisons and the 3 year sum of the
absolute values for the NPP bias was used in the Rm_base optimization.
Similarly, to optimize parameters over multiple sites and years, single
RMSEs and sums of absolute NPP bias were employed. All parameters
except those optimized and the LUEclear-sky were the same in the cross-
site optimization. Site level LUEclear-sky was retained because it was
assumed that in a spatial mode application it could be retrieved from
remote sensing (Drolet et al., 2008).

A cross-site, multi-year, optimizationwas performed for each FPAR
type, then a site-level, multi-year optimization was performed for
each site and FPAR type combination. For comparisons of site-level
and cross-site optimizations within one FPAR type, results are
presented for the case with SWfill FPAR because that FPAR type
yielded the lowest RMSE for NEE in the initial FPAR comparison.

3. Results

3.1. FPAR comparisons

In the MODISorig FPAR product, there were multiple 8-day periods
at all sites when high quality data were not available, probably
because of persistent heavy cloud cover (Fig. 2). The original data from
Table 2
Comparison of RMSE for gross primary production (GPP), ecosystem respiration (Re)
and net ecosystem exchange (NEE) for three forms of FPAR.

FPAR type

MODISfill MODISTS SeaWIFSfill

Error
RMSEGPP 1.68 1.55 1.67
RMSERe 1.54 1.43 1.45
RMSENEE 1.25 1.26 1.13

Parameter optimization was across all sites and all years.
the SeaWIFS FPAR product showed a similar pattern. These periods of
no data occurred during all seasons but weremost prevalent inwinter.
The simple gap filling algorithm of Zhao et al. (2005) effectively
corrected most of these problems. At CR, which does not usually
experience winter snow cover, there were still some artifactual
periods of lowMODISfill FPAR inwinter. At MR (Irvine et al., 2008) and
WR, there is occasional snow cover in the winter but the MODISfill
FPAR had no major artifacts. At NR, there is a solid snow cover all
winter, which would cover some of the tree vegetation, hence the
strong season signal in MODISfill FPAR at NR is reasonable.
Fig. 3. Comparison of one-to-one plots of net ecosystem exchange (NEE) for the
MODISfill and SWfill FPAR products across all sites and years. Separate parameter
optimizations (one optimization across all sites+all years) were run for each FPAR
product.



Fig. 4. Comparison of scatter plots for gross primary production (GPP), ecosystem respiration (Re), and net ecosystem exchange (NEE) using MODISfill and SWfill at the Niwot Ridge
site. A cross site parameter optimization was used for each FPAR type.
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In terms of the maximum FPAR, there was remarkably little
difference in MODISfill among these sites considering the great range
of LAI. Summer maximum MODISfill was close to 0.95 at all sites. This
value is about what is predicted by a simple Beer's Law conversion of
LAI to FPAR (Table 1). The Beer's Law conversion does not take into
account clumping of foliage which is common in conifer stands and
would tend to reduce FPAR (Stenberg, 1996). The MODIS FPARs thus
appear to be overestimates at MR and NR. Interestingly, the SWfill

FPARs exhibit more dynamic range between sites than the MODISfill
product but appear to be underestimates for the most part.

When parameter optimizationwas run across all sites and years for
each FPAR type, the RMSE for GPP and the RMSE for Re were lowest for
Fig. 5. Times series comparison of observed and simulated gross primary production. The SW
corner of each panel refer to the year.
MODISTS and RMSE for NEE was lowest for SWfill (Table 2). In the one-
to-one plot for NEE, the slope and the R2 values were similar for
MODISfill and MODISTS but the RMSEs were lower and the R2 values
higher for SWfill (Fig. 3).

The differences in FPAR resulted in different values for the
optimized parameters in some cases (data not shown). The modest
benefits of the greater dynamic range across sites in SWfill were most
evident at the NR site (Fig. 4). At that subalpine site, the flux rates
were generally low relative to the other sites, so in a multisite
optimization its estimates for GPP and Re tended to be high. This was
much more the case with the MODISfill product because there was
essentially no difference in the FPARs across sites. With SWfill, the
fill FPAR product and site level optimizations were used. The numbers in the upper right



Table 3
Ecophysiological parameter estimates for site-specific and cross-site optimizations.

Site

CR WR ME NR Cross-site

Parameter
LUE_max (gC MJ−1) 4.0 3.5 4.0 3.0 4.0
Tmin_min (°C) −12 NOa − 12 − 8 − 12
Tmin_max (°C) 4 NOa 6 4 4
VPD_min (Pa) 1000 0 1000 1000 0
VPD_max (Pa) 4000 2500 4000 3000 3500
Rm_base (gC m−2 d−1) 0.7 2.7 2.3 2.9 0.8
Rh_base (gC m−2 d−1) 5.0 5.8 10.0 10.0 8.8
Rh_a (unitless) 0.18 0.05 0.09 0.05 0.10
FPAR_min (0–1) 0.30 0.80 0.50 0.60 0.40

LUE_max is light use efficiency under conditions of maximum cloudiness. Tmin_min is
the temperature at which LUE begins to be reduced. Tmin_max is the temperature at
which LUE is reduced to zero. VPD_min is the vapor pressure deficit at which LUE begins
to be reduced. VPD_max is the vapor pressure deficit at which LUE is reduced to zero.
Rm_base is the base rate for maintenance respiration. Rh_base is the base rate for
heterotrophic respiration. Rh_a is the temperature sensitivity coefficient for Rh.
FPAR_min is the minimum value for FPAR in the Rh algorithm.

a NO = Not Optimized.
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lower FPARs at the NR site helped bring the simulated fluxes down. As
would be expected, the optimized base rates were generally lower for
the MODIS FPARs compared to the SW FPARs because the MODIS
FPARs were consistently higher.

3.2. Site-level optimization

3.2.1. Gross primary production
In the observations, it is clear that available ↓PAR tends to be the

dominant influence on GPP in these coniferous forests. Day-to-day
GPP variation is smallest at CR (Fig. 5) which also has the mildest
winter and summertime temperatures. Much larger day-to-day
variation in GPP is found at the other sites and appears to be driven
primarily by episodes of high VPD during themain part of the growing
season and low temperatures in the winter, both of which have the
Fig. 6. Times series comparison of observed and simulated ecosystem respiration. The SWfil

corner of each panel refer to the year.
effect of reducing GPP. There is evidence of soil drought effects on GPP
at MR (Thomas et al., in review) and WR (Falk et al., 2008) in some
years.

The optimization “chose” to use the VPD scalar at all sites and it
was obviously helping drive down simulated GPP on high VPD days in
parallel with the observations. The optimizations also chose to use the
Tmin scalar except atWR and it was obviously helping capture day-to-
day variation in GPP during the winter. A significant proportion of
annual GPP occurs during the winter at WR (Falk et al., 2008) which
suggests little sensitivity to temperature per se. Whereas the observed
clear-sky LUE varied by a factor of 3 (Table 1), optimized values for the
maximum LUE ranged between 3.0 (NR) and 4.0 (MR) (Table 3).

3.2.2. Ecosystem respiration
Tower observations of Re showed a similar seasonality to the

seasonal pattern in GPP (Fig. 6). The day-to-day variability in Re was
greater at the 2 high LAI sites, probably because of the higher foliar
biomass and the sensitivity of foliar respiration to air temperature. The
large amount of decaying coarse woody debris at WR would also
contributed to high Rh. Day-to-day variation was lowest at the coolest
site (NR).

The simulations capturedmuch of themid-growing season day-to-
day variability at CR, WR, and NR (Fig. 6). At MR, the Rh (and
consequently Re) was significantly reduced by the soil moisture scalar
in each year, which appeared to match observations. The simulated
reduction in Re was too great in 2002, a year with a relatively dry
spring, which suggests an overestimation of ET or underestimate of
soil water holding capacity.

The optimal base rates formaintenance respiration varied by over a
factor of 4 whereas the selected base rate for Rh, and the a parameter
for Rh, varied by a factor of 2 to 4 (Table 3).

3.2.3. Net ecosystem exchange
At all sites, there is a period of positive NEE (carbon sink) in the

spring and early summer followed by a sustained or fluctuating period
of negative NEE (carbon source) in mid summer (Fig. 7). This pattern
is most apparent atWR and least so at NR. Day-to-day variation in NEE
is high at all sites. The simulations generally followed the seasonal
l FPAR product and site level optimizations were used. The numbers in the upper right



Fig. 7. Time series comparison of observed and simulated net ecosystem exchange. The SWfill FPAR product and site level optimizations were used. The numbers in the upper right
corner of each panel refer to the year.
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trends seen in the observations and showed day-to-day variation of
similar magnitude and sensitivity to environmental variation.

3.2.4. Interannual variation
NEE is usually a small difference between the much larger GPP and

Re fluxes. Thus interannual variation in either GPP or Re tends to
propagate into NEE. At the annual time step, the tower data and
Fig. 8. Interannual variation in gross primary production (GPP), ecosystem respiration (Re),
SWfill FPAR and site level optimizations were used.
simulations showed a similar amount of interannual variation in GPP,
Re, and NEE. The sign of the year-to-year changes was generally in
agreement between tower and modeled data (Fig. 8).

Tower and model data generally showed that monthly Re anomalies
were correlated with monthly GPP anomalies (Table 4). Soil drought
would tend to affect GPP and Re similarly, which would explain that
general correlation. Cool temperatures would likely reduce Re but not
and net ecosystem exchange (NEE) for tower observations and model simulations. The



Table 4
Relationships of monthly anomalies (anom) for gross primary production (GPP),
ecosystem respiration (Re), and net ecosystem exchange (NEE).

Site Tower Model

Best fit R2 Best fit R2

NEP anom vs. GPP anom
CR y=−0.11x−0.01 0.01 y=43x+0.01 0.26
WR y=0.30x+0.00 0.05 y=0.62x+0.00 0.82
ME y=0.59x+0.01 0.82 y=0.51x−0.01 0.77
NR y=0.59x+0.01 0.63 y=0.54x−0.01 0.66

NEP anom vs. Re anom
CR y=−0.57x−0.01 0.62 y=−0.34x+0.00 0.13
WR y=−0.70x+0.00 0.59 y=0.65x−0.00 0.21
ME y=0.70x+0.01 0.28 y=0.55x+0.01 0.28
NR y=0.09x+0.00 0.00 y=0.26x−0.01 0.05

GPP anom vs. Re anom
CR y=0.43x−0.00 0.48 y=0.66x−0.00 0.38
WR y=0.30x−0.01 0.21 y=1.66x−0.01 0.63
ME y=1.70x−0.00 0.70 y=1.55x−0.01 0.76
NR y=1.01x−0.01 0.44 y=1.26x−0.01 0.58

FPAR type is SWfill and optimization type is site-specific.

Fig. 9. Relationship of the sign and magnitude of year-to-year change in NEE using
a) site-level parameter optimizations and b) a cross-site optimization. Each point
represents one year-to-year change at one site.
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necessarily GPP, which would tend to weaken the correlation of the
GPP and Re anomalies. NEEmonthly anomalies were strongly correlated
with GPP anomalies at the ME and NR sites in both tower and model
data. In contrast, the NEE anomalies were most correlated with the Re
anomalies at WR and CR in the tower data. There was only weak
correlation of NEE anomalies with Re anomalies in the model data.

3.3. Cross-site and off-site parameter optimization

In the cross-site optimizations, the parameter values selected were
generally intermediate among the ranges of values selected in the site-
specific optimizations (Table 3). The accuracy of the site-level
simulations was correspondingly reduced in the case of the cross-
site optimization. Using the parameters optimized across sites, RMSE
always increased for GPP through not always for NEE (Table 5)
comparedwith usingparameters optimized at the site level. The ability
to capture interannual variation in NEE was also reduced (Fig. 9).

When parameters from one site were used at other sites, the
RMSEs increased. Using WR parameters at the other sites caused the
mid growing season residuals for GPP and Re to generally increase
relative to the site-level parameterization (Fig. 10). In the case of GPP,
the more positive residuals (model underestimates) were primarily
because of the greater sensitivity to VPD atWR (Table 3) and relatively
high VPDs elsewhere, especially at MR. In the case of Rh, the higher
Table 5
Root Mean Square Error (RMSE) at the site level for gross primary production (GPP),
ecosystem respiration (Re) and net ecosystem exchange (NEE) using site-specific and
cross-site parameter optimization.

Site

CR WR ME NR

GPP
RMSEsite 1.48 1.69 1.21 0.68
RMSEcross-site 1.90 2.15 1.50 0.77

Re
RMSEsite 1.30 1.69 1.21 0.68
RMSEcross-site 2.13 1.58 1.07 0.50

NEE
RMSEsite 1.18 1.40 1.00 0.52
RMSEcross-site 1.19 1.46 0.99 0.72
residuals were primarily because of the relatively low sensitivity of Rh
to temperature atWR (Table 3) which tended to cause underestimates
elsewhere.

The cross-site, cross-year RMSEs for GPP were similar in each case
where the site-specific parameter values were used across all sites.
The RMSEs for Re varied more widely (1.33–2.36) (Fig. 11).

4. Discussion

4.1. FPAR issues

Both the MODIS and SeaWiFS FPAR products are based on surface
reflectance data and radiative transfer modeling (Myneni et al., 2002;
Gobron et al., 2006). Despite an 8–10 day compositing period, many
bin periods remained at these sites that were continuously overcast at
the overpass time (12:00 for MODIS and 13:30 for SeaWiFS, local
time). Once the intervals with low quality data were filled with the
Zhao et al. algorithm (2005), a mostly stable FPAR trajectory was
produced. The MODISTS smoothing clearly reduces some artifactual
short term variation in the MODISfill product. The week-to-week
variation remaining after filling/smoothing is especially low in the
summer growing season when FPAR is most important in diagnostic
models.

The absolute magnitude of the FPAR estimates was consistently
high for the MODIS products, with summertime FPARs on the order of
0.95 across all sites. These high FPARs are accurate at the two high LAI
sites (CR and WR) but are clearly overestimates at MR and NR where
LAIs are much lower. A tendency for the MODIS product to over-
estimate FPAR has also been observed in other biomes (Fenshlot et al.,
2004; Turner et al., 2005),with apparently some improvements on this
issue between Collections 3 and 4. The Enhanced Vegetation Index
(EVI) is also produced from the MODIS reflectances and was designed
to address the saturation issue (Huete et al., 2002). EVI is theoretically
an indicator of chlorophyll FPAR and is used as a substitute for FPAR in
several diagnostic carbon flux models (Xiao et al., 2004; Sims et al.,
2008), but the saturation issue has not been examined.



Fig. 10. Time series of the residuals for gross primary production (GPP), ecosystem respiration (Re), and net ecosystem exchange (NEE). The year is 2002. Each panel has the residual
(model — tower) for its site optimization and the residual when run with the parameters from the Wind River site optimization.
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The SeaWiFS FPARs had maximum values of about 0.6 at CR and
WR, which were clearly underestimates. Maximum values at MR and
NR were about 0.3 which were also consistent underestimates. One
factor here may be that the 3 cell by 3 cell averages covered a large
enough area (~6.6×6.6 km) that it included areas with lower FPAR
than the tower site. Nevertheless, because of the greater dynamic
range between low and high FPAR sites there appears to be more
information on broad geographical patterns in FPAR in the SeaWiFS
product at these conifer forest sites compared to the MODIS product.

At the NR site, there are periods of snow cover every year and these
seem to be registered on the MODIS product but not the SW product.
In contrast, snow is rare at the CR site but both FPAR products there
show seasonality in FPAR, probably related to issues with cloudiness.
In any case, the apparent FPAR artifacts during thewinter at these sites
have little effect on simulated fluxes because incident PAR and Tmin
are relatively low already.

For the most part, FPAR does not vary much interannually at
conifer sites, which is consistent with the similar satellite-based
estimates for midsummer FPARs across years at these sites. Large
changes in MODIS and SeaWiFS FPAR products have been observed at
conifer sites after large disturbances such as fire (Turner et al., 2006;
Gobron et al., 2006).
Fig. 11. Effect on cross-site Root Mean Square Error (RMSE) of using site-specific
parameters when running across sites. CR = Campbell River, WR = Wind River, MR =
Metolius River, NR = Niwot Ridge, All = cross-site.
Themore accurate simulations of NEE using SWfill for the cross-site
optimization compared to using the MODIS products (Table 2, Fig. 3)
would be expected because the lower FPARs in SWfill at the less
productive sites is providing the simulation with more information
than is the case with MODISfill. The difference between outputs based
on MODISfill and SWfill is greatest at the low LAI sites like NR (Fig. 4).
The artifactually high FPAR in MODISfill tends to push the GPP and Re
too high there. The optimized base rates for Rm and Rh were high in
the case of the SWfill optimization (Table 2) because both Rm and Rh
are driven by FPAR and since the FPARs are low, the optimized base
rates are high.

The RMSEs for the MODISTS FPAR were less than or equal to those
for the MODISfill FPAR. The modest benefits are a function of
smoothing out artifactual short term variation associated with clouds.
Nightengale et al. (2009) showed a similar modest effect of the
TIMESAT smoothing when the product was used in CASA, another
diagnostic carbon flux model.

4.2. Variation in site-level parameterization

The sites differedwidely in themaximumandaverage values forGPP.
The maximum values for tower GPP were greatest at CR, intermediate
at WR and MR, and lowest at NR. These values are consistent with
expectations based on climate and stand age: NR is the coldest site and
the low maximum GPP is associated with a conservative ecophysiolo-
gical strategyoften found in trees in extremeenvironments (Woodward,
1995). The stand age at NR is also relatively high, which probably
introduces an additional constraint on productivity (Gower et al.,1996).
CR has a mild climate and is a relatively young stand, thus has higher
maximum GPP. The WR site is unusual in having relatively old trees
(~450 yrs),whichmayaccount for the lowermaximumGPP. TheMR site
is young for Ponderosa pine but often experiences effects of high VPDs
and soil drought on GPP.

With site-level optimization, the CFLUX simulations of GPP
generally agreed well with the tower data. One exceptionwas a period
of high GPP in the simulations at NR in 2004 driven by an artifactual
bump in the FPAR (Figs. 2 and 5). A second exception was the days of
artificially low GPP in mid summer at WR. The optimization there



1538 D.P. Turner et al. / Remote Sensing of Environment 113 (2009) 1529–1539
selected VPD limits of 0 and 2500 Pa, which were low relative to the
limits selected at the other sites and tended to make the simulations
over sensitive to VPD.

As would be expected because of its low productivity, the observed
clear-sky LUE (Table 1) and optimized maximum LUE (Table 3) were
lowest at NR among the sites. Values for maximum LUE ranged from 3
to 4 gC MJ−1 at the other sites, close to the maximum physiologically
possible LUE. Note that these values would be achieved only under
overcast skies, low VPD, and moderate temperatures.

The optimized values for minimum temperature parameters were
similar across sites and were similar to the values used in the MOD17
diagnostic model in global runs with MODIS data (Running et al.,
2000). The optimization did not use the Tmin scalar at WR, possibly
because incident PARwas a better predictor. The optimization selected
a relatively low VPD minimum and maximum at WR and this may
reflect a conservative ecophysiology associated with the quite old
trees there.

The maximum Re in the observations generally followed the
pattern in maximum GPP, with CRNWRNMRNNR. After optimizing
the base rates for Rm and Rh, the simulations showed generally good
agreement with the observations. The optimized values for the base
rate of Rm were conspicuously low at CR (Table 3) which is consistent
with it being a relatively young stand in a favorable site. The optimized
base rate for Rh was also relatively low at CR but the temperature
sensitivity for Rh was much higher than at the other sites, thus
apparently compensating for the lower base rate.

The observations showed strong site-specific differences in the
relative importance of GPP vs. Re monthly anomalies in explaining NEE
monthly anomalies. At MR and NR, the NEE anomaly was more closely
correlated with the GPP anomaly whereas at CR and WR it was the Re
anomaly. This difference could be interpreted as a greater sensitivity of
the Rm component of Re at CR and WR because LAI and aboveground
biomass were much greater (Falk et al., 2008). The modeled NEE
anomaliesweremost stronglydrivenbyGPPanomalies in all cases. The
difference at the high LAI sitesmay be due to an underestimation of Rm
because the values of SeaWiFS FPARs are artifactually low. Never-
theless, the model did account for 70% of the year to year variation in
NEE across all sites (Fig. 9).

4.3. Cross-site parameter optimization

The increase in error when running with parameters optimized
across all sites is expected because parameters optimized at the site
level differed from those derived from the cross-site optimization in
some cases. The RMSE increase was less than 25% except in one case
(NEE at NR). There were much larger increases in error in some
cases when parameters optimized at one sitewere used across all sites
(Fig. 11). The cross-site RMSE for NEE was between 1.26 and 1.75 with
the site-specific optimization and was 1.13 with the cross-site
optimization. This response indicates the benefits of a multiple site
parameter optimization approach.

With the increase in number of flux towers either currently or
previously supported in each biome, the possibilities for alternative
parameter optimization schemes is growing. The ecoregion (Omernik,
1987) is a natural level at which to stratify available towers and two or
more tower sites can be found inmost of the Level I ecoregions inNorth
America (CEC, 2008). Further research is needed on the possible trade-
offs of using a single tower site in a Level II or Level III ecoregion (higher
levels are more narrowly defined) vs. multiple towers sites in a Level I
ecoregion. In Turner et al. (2006), CFLUX was optimized by vegetation
cover type for the Level 3 ecoregions in western Oregon but that
required using outputs from the Biome-BGC model run at selected
points as reference data because there were insufficient towers. Either
multiple sites within Level I ecoregions or single sites within higher
level ecoregion stratifications would be an improvement over a single
site per ecoregion at a low level of ecoregion stratification.
5. Conclusions

Diagnostic carbon cycle models are increasingly used to monitor
terrestrial gross ecosystem exchange, ecosystem respiration, and net
ecosystem exchange at regional to global scales. FPAR products from
different sensors vary widely in their absolute values for particular
sites and their dynamic range across sites. Site-specific parameter
optimization at eddy covariance flux tower sites can produce
simulations with good fits to observational data but optimized
parameters may vary across sites within a biome. For large area
simulations, a cross-site parameter optimization within a given
vegetation cover type will reduce prediction error compared with a
single site optimization.
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